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Some aspects of classical and quantum theories of quarks, gluons, and their 
interaction mechanisms are considered within the framework of stochastic space- 
time, which is induced by a random string field. It turns out that quarks and 
gluons are extended objects, the propagators of which are entire functions in the 
momentum space. It is shown that the topological structure of space-time inside 
hadrons plays an essential role in quark confinement and asymptotic freedom. 
The strong coupling constant and confinement potential, mass, and energy of 
quarks depend on the Euler number, which gives rise to a unified description of 
the interaction picture in QCD at short and long distances. Quantization of nonlocal 
quark fields is achieved by using an indefinite metric, and their electromagnetic 
nonlocal interaction is also considered. 

1. I N T R O D U C T I O N  

It is wel l  known that the major i ty  o f  observab le  mat ter  exists  in the 
form of  bounded  states (beginning as galaxies ,  stars, the solar  system, a toms,  
and f inishing as hadrons).  

Forces  respons ib le  for  holding these forms o f  matter,  except  hadrons,  
are o f  gravi ta t ional  and e lec t romagnet ic  nature,  which  decrease  as l l r  2, where  
r is the d is tance  be tween  the const i tuent  parts  o f  the bounded  states. The  
nature and type  o f  the force be tween the quarks  f rom which the hadron 
structure is fo rmed are not well  known,  even in the f r amework  of  quantum 
ch romodynamics  (QCD).  One reason is that Q C D  does  not  work  at large 
distances.  The conf inement  proper t ies  o f  quarks  and gluons give rise to 
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the proposition that the force between them increases as r n, n being some 
phenomenological constant that should be defined from experimental data. 

QCD is the modem theory of strong interactions, where quarks and 
gluons carrying the "color" quantum number play the essential role in the 
understanding of the hadron structure, at least in the short-distance regime 
(asymptotic freedom). 

However, we still lack a good understanding of longer distance hadron 
physics, in particular when quarks and gluons are "confined" inside hadrons. 
Many attempts (Efimov and Ivanov, 1993) have been made in this direction, 
giving some hope of success. 

A distance-dependent regime of QCD makes sense in that not only does 
the strong interaction picture depend on the energy scale (distance) (for 
example, the strong coupling "constant" decreases with increasing momen- 
tum), but also constituent quarks and gluons carrying this interaction may 
possess some unusual inner properties that depend on this scale. In this paper, 
we will try to understand quarks and gluons as composite objects connected 
with the space-time structure in their neighborhood (or inside hadrons). We 
assume that space-time, due to the presence of quarks, begins to fluctuate 
inside the hadrons and its topological structure gives rise to changes in the 
physical quantities of quarks. 

This means that the structure of space-time is distorted in the immediate 
neighborhood of a particle (quark), which leads to the concept of confinement 
and to the problem of reformulating the dynamics of the particle. Further, 
we propose that random stringlike objects carry a fluctuational property of 
space-time and that these stochastic strings alter the geometry of space-time 
(at least inside hadrons); this alteration, in turn, affects the behavior of quarks. 
In Namsrai (1993) we showed that this self-referential nonlinear property of 
gravity is responsible for the appearance of the nonlocal interaction of quarks 
and the confinement force between them. It turns out that quarks and the force- 
transmitting quanta--gluons--become extended objects, the propagators of 
which possess unusual properties. Moreover, the structural aspect of this 
nonlocality depends on the energy (distance) of the quarks and gluons. 
Roughly speaking, this distance-dependent property may be understood as 
follows. When quarks and gluons travel faster, they look like pointlike objects 
(at small distances) and interaction between them takes place at a point, i.e., 
the local-interaction picture is valid. When they move slowly, they become 
nonlocal or spread out over space-time, and their interaction turns out to be 
nonlocal. In our approach, the topological structure of space-time inside 
hadrons plays an essential role. Roughly speaking, if we assume that hadrons 
are spread out in a domain characterized by the parameter v/-~o ~ m~ -L and 
are stringlike carriers of these structural properties with respect to space- 
time, then all physical quantities of their constituent parts--quarks--depend 
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on a topological invariant known as the Euler characteristic of a two-dimen- 
sional surface M by which hadrons are covered. 

For example, the mass of a quark depends not only on its velocity as 
m = mo(1 - v2/c2) -t/2, in accordance with the special theory of relativity, 
but it also depends on the Euler number 

m0 } 
m - (1 - v21c2) It2 exp ~ a '  Euler(M) 

Here k is some constant with the dimension of length (see below). If M has 
genus N(i.e., Mis homeomorphic to a sphere with Nhandles, or to a connected 
sum of N tori), then Euler(M) = 2 - 2N. Moreover, as shown below (Section 
2), the potential force between quarks and the strong coupling constants also 
depend on the topological structure of space-time inside hadrons: 

g = go exp Euler(M) 

We observe an interesting fact if we take into account the Lorentz factor in 
the definition of the parameter et' = ~;(1 - Q21c2), then, due to the presence 
of the topological multiplier (with N --~ 2), the strong coupling "constant" 
decreases with increasing momentum Q of hadrons ("runs"), precisely as 
predicted in 1973 with the discovery of asymptotic freedom. Thus asymptotic 
freedom, one of the pillars of QCD, is caused by the topology of space-time 
at short distances. 

This fact explains why, with respect to topology, hadrons may be consid- 
ered as a connected sum of N ~ 2 tori; the mass of the quark and its coupling 
constant at low energies go to zero when N ~ ~. The latter case gives some 
hope of a unified description of the short- and longer distance effects by 
means of the topological structure of hadrons. 

The purpose of this paper is to study some aspects of classical and 
quantum theories of nonlocal "confined" particles, to carry out the quantiza- 
tion procedure by means of indefinite metrics, and to show the finiteness of 
the theory. Section 2 is devoted to formulating the problem within the frame- 
work of the induced gravitation due to stochastic string fields. In Section 3 
we consider the classical motion of the particle that is "confined" in some 
domain characterized by the parameter ~;, where ~; -- rnp -2 is the inverse 
string-nucleon tension (or its size). 

In Section 4 we briefly discuss the quantum mechanical consideration 
of "confined" particles and obtain their Schr~Sdinger equation. Section 5 deals 
with the Lagrangian formulation of extended quarks and its regularization 
and quantization procedures, in accordance with the Efimov (1977) nonlocal 
theory. The construction of the finite gauge-invariant S-matrix and the calcula- 
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tion of some of the primitive Feynman-type diagrams of the nonlocal electro- 
magnetic interaction of quarks are carried out in Section 6. Within the 
framework of our scheme, the nonlocal interaction Lagrangian of QCD, 
concrete calculation of the S-matrix elements, and proof of finiteness and 
gauge invariance of the theory for such a Lagrangian will be studied elsewhere. 

2. STOCHASTIC STRINGS AND T O P O L O G I C A L  STRUCTURE 
OF SPACE-TIME INSIDE HADRONS 

Our main assumption is that hadrons are spread out in some domain, 
in the immediate neighborhood of which the space-time structure is distorted 
and fluctuating. This structure is described by a random string field having 
the appearance of a surface effect with respect to the empty space-time outside 
the hadrons. In other words, stochastic strings alter the geometry of space- 
time, and that alteration in turn affects the behavior of particles--hadrons. 
It turns out that the self-referential nonlinear property of gravity is responsible 
for the appearance of the nonlocal interaction and the confinement force 
between quarks, and their coupling constant depends on the hadron momen- 
tum and the Euler number of the "hadron" surface, which may be chosen 
arbitrarily small in both the short- and long-distance regimes of QCD. 

Let us consider the stochastic space-time induced by random strings, 
the behavior of which is described by the probability distribution 

e[y]:lexP{--2fM, fM2d2cr, d2ff2x/'-~J.J~2Y~(ff,)D~(ff,--0.2)Yv(ff2) } 
(1) 

where M is a two-dimensional surface known as the string world-sheet (0. 
= o ~ = {0.1 = 0., 0.2 = -r}), which is equipped with a metric tensor gab, while 
space-time has coordinates x~'('r) and metric Gg~; I~(0.) are the coordinates of 
the strings, and N is a normalization constant. 

D ~  is the inverse of the two-point correlation 

(Y~(o'0P'(0.z))r = D~"(0.t - 0"2) (2) 

In this paper we use the white noise covariance 

h2 
D~(0.! - 0.2) = - ' q ~ "  ~ ~2(0.! _ 0.2) (3) 

Here e is the Ricci curvature scalar of the manifold M, and X is some 
constant with the dimension of length. We distinguish two possibilities: (a) 
h 2 - G ,  where G is the Newtonian constant, (b) X 2 -- a~, where a~ is the 
inverse string tension (the size of the string). 
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The former means that fluctuations of  the string coordinate takes place 
at the Planck scale, while the second case means that coordinates Y~((r) obey 
random properties in a domain characterized by the size of  the hadron. Further, 
we propose that coordinates Y~(0-) are made to fluctuate around the usual 
space-time coordinate x~'(-0: 

1 Y~(0-) = ~ ~(0-1)x~(0-2 = "r) + .q~(0-1, 0.2) (4) 

where the functions "q~(0.) are random variables of type of Y~(0.). 
As shown in Narnsrai (1993), the formal transformation 

~ ~ x ~ exp 2(,rr~,)t/2 d2e ,/gRn~(0-)Y~(0-) = x~A 

[n~(0.) is a unit vector, -~l~n~('r)n~('r) = 1, depending on the timelike variable 
0.2 = "r only] leads to the metric tensor 

G,,,,(x, Y) = A2[rl~ + ~,(x) + �88 (5) 

and 

3 op o" G~(x, Y) = A-2[~l ~ - ~w(x) + u (x)ep(x) . . . .  ] 

where 

It is easily verified that 

1 
~(x) - ~,/-~-~x~(r)n~(r) 

G~(x, r3G~v(x, Y) = ~ 

Now let us carry out an averaging procedure in (5) over the random 
variable I~(0-) with the probability distribution (1). Taking into account 
formulas (3) and (5) and using the Feynman rules (Feynman and Hibbs, 
1965), we have 

G~(x) -- (G~(x, Y))~, 

[ 1 "~(X)~'P(x)] = ~ + %~(x) + 
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Here we have used the differential of the string coordinates 

OY~(~) 1 

in accordance with formula (4) and the fact that n~('r) is a unit vector. 
By definition, 

Euler(M) = ~ d2~ , f g R  = 2 - 2 N  

where it is assumed that M has genus N (i.e., if M is homeomorphic to a 
sphere with N handles, or to a connected sum of N toil); one gets 

G ~ ( x )  = exp~--~-;-(1 - N) n ~  + e~,(x) + 

This is a main formula in our scheme. Formula (7) means that the physical 
space-time metric of the hadron matter is slightly changed with respect to 
the Minkowski one due to topological properties of  space-time at short 
distances (or inside hadrons). 

Let us study the constituent par ts - -quarks- - in  hadrons by means of 
the space-time metric (7). First of all, it should be noted that when a hadron 
travels with velocity Q, then its proper "size" or' undergoes the Lorentz 
space contraction 

a '  = a~(1 - Q21c2) (8) 

At the same time, the constituent quark carries some fraction of the total 
proton momentum Xv 2 = QZ; therefore the topological factor in (7) takes 
the form 

[4k2 N ) } =  exP{ot6[ 1 4k2 N)} (9) exp~--~- (1 - Z ~xv2/&)] (1 

where v is the velocity of  the quark. Thus, we are now ready to construct 
the theory of induced "gravity" with the metric tensor (5) or (7), by using 
the general covariant method (Weinberg, 1972) with respect to the system 
of reference x ~. For example, in the limiting case when the velocity of  the 
quark is small, an additional nonrelativistic "potential" tp appears (Landau 
and Lifschitz, 1971; Namsrai, 1991): 

q~ = �89 - G| (10) 

Omitting the unessential constant and choosing as unit vector n~('r) in 
(5) the four-velocity (Q~ = 4/-Xv,) of the hadron, we have 
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m 
U = mq~ = - ~  caG~ 

x 2 
=mc22 expl" ~-f4h2 (1 + ~22) (1-  N)}[ 1 - x02(l- XV2/C2)] (11) 

where ~ = 4"ira;. Further, expanding this expression into power series of 
XV21C 2 and keeping the main terms, one gets 

U=--~-- O 1 - 

f4h2 } 
p = e x p ~ . - ~  (1 - N )  , 4K---~2 (1 - N)} 

L = X p  2 +  ot~ 

where 

(12) 

To illustrate the explicit dependence of this potential on the topological 
r invariant N, we choose v2/c 2 = 1/9, • = 3, and h 2 = ot 0. 

For this particular case, the form of the quark potential is sketched in 
Fig. 1 for different values of N. 

U 

B . . . .  I N4"4 

N=3 

'\\ t //' i 1 i 
I | 

X -4 -3 -2 2 3 4 r=x% 

/ I \..2 
Fig. 1. Form of the quark potential for different values of the Euler number. 
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The second important characteristic of the quark is its energy. When 
the quark moves inside the hadron, its averaged energy is defined as (Landau 
and Lifschitz, 1971; Namsrai, 1991) 

E _ 
J l  -- V2/C 2 

exp{ } 
x/1 - v2/c 2 Oto(1 -- Xv2/c 2) (1 - N)  

X2 11/2 

x [ 1 - 4[1 - ~ / d ) ]  J (13) 

From this we immediately conclude that the quark undergoes a finite 
motion, the phase diagram (Fig. 2) of which takes the form 

p2 X 2 
p ~  + x~----~ < -- 1 (14) 

where Pmax = mc,  p = v/xmv, and Xma~ = x0 = 2 ~ v / ~ .  Assuming ~t~ = 
mp 2, we get Xm~x = 10 -13 cm. 

From expressions (1 1) and (14) one can conclude that the quark mass 
is changed according to the formula 

m ~ mq = m exp ~ 1 - (XV21C2)] (1 - N)  (15) 

It is easy to see that the rest mass of the quark becomes zero at sufficiently 
large values of N. In the nonrelativistic limit, expression (13) takes the form 

,P 

xmax 

Fig. 2. The phase diagram of the quark inside a hadron. 
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Enonre ! = p '  m c  2 1 x 2 + T 1 + 2 X + Cto (1 - N) 

x 2 2• 

p' = exp{(h2&;)(1 - N)}. Here we have assumed that x21x~ < 1. 
Quantities (12) and (16) are quite sufficient to consider the classical 

motion of the quark inside the hadron by means of the topological invariant. 
We now go on to this problem. 

3. CLASSICAL MOTION OF THE QUARK INSIDE THE 
HADRON 

In order to illustrate the quark motion from the point of view of the 
classical theory we assume that a quarklike particle undergoes a finite motion 
in some domain, and that its potential and energy are given by formulas (12) 
and (16). Then, as usual, a classical description of the quark motion is carried 
out with the aid of the correspondence principle. The Lagrangian function 
of the quark has the form 

~,~ = Enonre, - U = D(x 2) + ~ Q(x 2) (17) 

where 

x2~ 1/2 1 

(18) 

with 

I. oto f4h2 } L' [ h, ] p=exp)---- ; - ( l  - N )  , = 2Xp' 1 + - - ( 1  - N )  , 
ot o 

t = X p [ 2  q - 4)k2 ( |  - N ]  

The Euler-Lagrange equation 

d 0~ 3~ 
= 0  

dt  av 0x 
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leads to the following equation of motion of the quark: 

_ my 2 - xZ~'n~ H(x2)] (19) 
:o,, 

+ x~2v • MH(x%} 

where M = r x p is the angular momentum, and 

H(x 2) = ( 1 -  ~ / ~ ) - 3 n / - ( p '  + L ' ) ( I -  x21~)- 2Xp' ] + 2L (20) 

We see that equation (19) is nonlinear and quite complicated. Such a 
composite form of the equation of the quark motion is caused by a self- 
referential effect depending on the topological structure of space-time inside 
the hadron. Terms in the right-hand side of (19) are responsible for a spiral- 
like finite motion of the quark in the domain characterized by the parameter 
o6. We now use another method for the integration problem (Landau and 
Lifschitz, 1965). 

The point is that our problem is reduced to that of the quark motion in 
the external central field (12), in which its potential energy depends only on 
the distance r from a definite fixed point (hadron "center"). In this case, 
there is no need to write equation (19) of the quark motion and, by using 
the conservation of its energy and momentum, one can obtain a full solution 
of the given problem. Thus, introducing the polar coordinates (~0, r) in the 
Lagrangian function (17), we see that the coordinate q~ is absent from it, and 
therefore the corresponding generalized momentum 

P, = __ = mr2Q(r2)ip 
or 

is the motion integral, i.e., 

mr2CpQ(r 2) = M = const (21) 

From this we define ~0 through M and substitute it into the expression for 
the energy, obtaining 

m [m22 M2 J Etot = ~.. (/.2 + r2dp2)N(r z) + D(r 2) = + 2mr~_~(r2 ) N(r 2) + D(r z) 

(22a) 

where 

N ( r 2 ) = ( 1 - r 2 \ - ' r z r '  L ' ) ( 1 - ~ o )  [(P + - ~ ) - 2 X p '  ] - 2 •  - ~ )  

(22b) 
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and the functions D(r 2) and Q(r 2) are given by formula (18). From (22) 
one gets 

i" - dr M2 1/2 
- ~ -  ~/~m [ N- ' (r2)(E-  D(r2)) 2mrTQ2(r2)] 

or, separating variables and integrating, we obtain 

M2 -~ - I/2 
t = N/ f~ f[N- | ( r2) (E-D(r2) )  2mrS-~2(r2) j d r + c  

Further, writing (21) in the form 

M 
dq~ - mr2Q(r2) dt 

(23) 

(24) 

and substituting dt from (23) and integrating, we find 

1 [ (M/rZ)Ntn(r 2) 
q~ = ~ Q(r2)[ E _ D(rZ ) _ N(rZ)M212mr2QZ(r)]ln + c (25) 

Formulas (24) and (25) solve the given problem in a general form. The 
latter determines the connection between r and q~, i.e., the equation of 
the trajectory. Formula (24) defines, in a nonexplicit form, the distance r of the 
moving quark's point from the center as a function of time. Notice that 
the angle q~ always changes monotonically with time since from 

M = mr2~Q(r 2) = const 

it follows that ~ never changes its sign for appropriate choices of the function 
Q(r z) in (18). 

The radial part of the motion may be considered as one-dimensional 
motion in the field with the "effective" potential energy 

MEN(r z) 
Uefr = D(r ~) + 2mr2Q2(r 2) 

Values of r at which the equality 

M2N(r 2) 
E = D(r 2) + 2mr2Q2(r 2) 

holds define a boundary of the scattering domain of the motion from center. 
From the physical point of view, in the general case, the variation of r has 
two boundaries, rma x = r 0 and rain = 0, and therefore the motion of the quark 
is finite and its trajectory is wholly situated inside the circle of  radius Xo = 
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Fig. 3. Possible form of the trajectory of the quark motion inside a ha&on. 

ro = 2 ~,~-~. However, this does not mean that the trajectory is certainly a 
closed curve. 

When r changes from rmax = r0 tO rm~ n = 0 and then to rm~x again, the 
radius vector turns through the angle Atp 

rfrm~" ( MIr2)N ll2( r2) 
A~p = 2 Q(r2)[2m(E _ ~ r Z ) )  ~ --~N(r2)/r2QZ(r)] v2 (26) 

in 

in accordance with (25). 
The condition of the closedness of the trajectory consists in that this 

angle be equal to the rational part of 2"tr, i.e., it have the form Aq~ = 2"rrml 
n, where n, m are integers. Thus, after n repetitions, the period of the radius 
vector of the quark point has accomplished m full rotations and coincides 
with its initial value, i.e., the trajectory is closed. However, such cases are 
rare and for suitable choices of the form of the functions D(r2), N(r2), and 
Q(r 2) (i.e., the Euler number should be chosen arbitrarily), the angle Aq~ is 
not a rational part of 27r. Therefore in the general case the trajectory of the 
finite motion is not closed. It goes through its minimum and maximum 
distances innumerable times (as shown in Fig. 3) and fills, during an infinite 
time, the whole domain (i.e., inside the hadron) determined by the parameter 

P 
Ot O. 

4. QUANTUM M E C H A N I C A L  CONSIDERATION OF THE 
QUARK MOTION INSIDE THE HADRON 

A quantum mechanical description of the quark motion inside the hadron 
is carried out in the standard way. In accordance with formula (13), the 
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Hamiltonian function of the nonrelativistic motion of the "free" quark takes 
the form 

or 

H = mqC 2 q- 1 - ~ooJ 

H mqV 2 (27) 
(1 - x2/X2) 1/2 - mqc2 q- 2 

where the quark mass mq is given by expression (15) and X0 z = 4(1 - Q2/ 

c2), x 2 = 4"tm~, and Q is the hadron momentum (velocity). 
If the hadron is at rest, then Q = 0. Now omitting the inessential constant 

mqC 2 and passing to the quantum mechanical quantities, one gets 

= - -  (28) (1 - x21X~) It2 2m 

The usual substitutions/7/~ ih 31Ot and : = - i h  Oldx give 

x . d ~  - - -  V 2 ~  ( 2 9 )  
1 - th  "dt 2 m  

In the stationary case 

we have 

~F = const, e(-ilh)Et~(x) 

( h 2 x 
~-~m V2~ + 1 -  E ~ = 0  (30) 

It is easily verified that the function 

/~  x2 X--~ { /  ( h x2 ~-"4~ , 
�9 (x) = const- - exp px 1 - ~00] (31) 

satisfies equation (30) up to O(IIX2).  
Thus, the full wave function of the stationary states of the quark has 

the form 

~ /  { i i ( X2 ~- 1/4~ 
= const. 1 X2 exp Et + - (32) 

(E = p2/2m). 



454 Namsrai 

We see that this solution correctly represents the general physical picture 
of the given motion of the quark. Indeed, the wave function (32) decreases 
and goes to zero at the "surface" of the hadron x 2 = X 2 and rapidly oscillates. 
It has the form shown in Fig. 4. 

Now we study the general situation when the constituent quark carries 
some fraction of the total momentum • 2 = Q2. 

In this case, the total Hamiltonian function has the form (22a), 

ml,, 2 
H = D(x 2) + T N(x~) 

or, in quantum mechanical operator language, 

ih(dattldt) - D ( x 2 ) ~  _ h 2 
AxI, 

N ( x  2) 2 m  

where the functions DOff) and N(x 2) are defined by formulas (18) and (22b), 
respectively. Since the functions D(x 2) and N(x 2) depend on the radius vector, 
x 2 = r 2, and therefore the problem is reduced to the Schrcidinger equation 
for the quark motion in the central-symmetric potential (Landau and Lifschitz, 
1963). In the stationary case, it takes the form 

2m 
A ~  + ~-T [E' - U'(r)pt '  = 0 (33) 

where E' = E N - I ( r 2 ) ,  U ' ( r )  = D(r2) /N(r2) .  
Making use of the well-known expression for the Laplacian operator in 

spherical coordinates, we get 

RaV(~ 

x 

Fig. 4. General picture of the wave function of the quark inside a hadron. 
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r 2 Or r2 -~r + -~ sin 0 30 

2m 
+ - ~  [ g '  - U ' ( r ) ] ~ '  = 0 

1 0 2 ~ ]  

sin O J 

(34) 

If we introduce the operator 

= - - -  + - -  - -  s i n  0 
T2 sin20 0go 2 sin 0 O0 

of the angular momentum, then we obtain 

h2 - -~ -~r ~ r -~r ) + + U' ( r ) XI t = E'  XI t (35) 
2m 

For the motion in the central-symmetric field, the angular momentum 
is conserved. We will consider stationary states in which P and lz have definite 
values. In other words, we find general eigenfunctions of the operators/q, 
12, and Z z. 

The condition that �9 is an eigenfunction of the operators ~ and l'z is 
that it defines its angular dependence. Therefore we seek a solution of equation 
(35) of the form 

= R(r)Ytm(O, q~) (36) 

where Yim(0, ~p) are given by the standard expression 

1 
Ytm(0, tp) = ~ww e'm~0~(0' q0 

1 ei,n~( - l ) m i t / ( 2 l  + 1) (l - m). v P?(cos 0) (37) 
x / ~  ~ /  2 (l + m)! 

Further, taking into account the identity 

PYtm = l(l + 1)Yl,, 

we have the following equation for the "radial functions" R ( r ) :  

1 d ( d R )  i ( l + l )  2m 
r 2 dr  r2 -~r r ~  R + -~T [E' - U'(r)]R = 0. (38) 

The standard substitution R(r) = •  reads 

d 2 x +  [2m 1(!+ 1)] 
dr  2 ~ (E' - U') r 2 �9 X = 0 (39) 
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and 

The physical requirement of quark confinement gives 

x(r = ro) = 0 

~ / ~  rl ( d )' sin k______ r k - P -  2 ~  
R ~ Ru = ( - l  )t -~ - ~ r  " r ' h h 

at the "center" of the hadron, rlro < <  1, i.e., it returns to the stationary states 
of the "free" quark at small distances at which the quark, at the same time 
as the energy, possesses a definite absolute value of its momentum projection. 
The normalization condition for the radial functions R(r) and • is defined 
by the integrals 

IRI2r 2 dr 2 and IXI 2 dr 

respectively. 
Because of the complicated forms of the functions N(r 2) and D(r 2) an 

explicit solution of (39) is impossible and numerical investigations are needed. 
This problem is beyond the scope of this paper. 

We now study an approximate equation which is obtained by means of 
decomposing the functions N(r 2) and D(r 2) in power series of (rlro). The 
result leads to the Schr/Sdinger equation with the spatial anharmonic oscillator 
potential. We restrict ourselves to terms of order rZlr 2 and distinguish two 
cases, where a dominating contribution comes either from the energy value 
(16) or from the potential field (12). Such a difference depends on the Euler 
number Euler(M) = 2 - 2N. Consider the first case and assume, as before, 
• = 3 and N = 3. Then equation (33) acquires the form 

~T2m ( 21 2 2~ �9 AW + ,el  - mo~tr j ' l ,  = 0  (40) 

where 

ej -- -~  (mc 2 - Ee2), ~ = --121 --rg 12c2 - m-- e2 ' e = 2.73. 

Equation (40) means that the quark moves in the spatial oscillator field 
U = �89 2 + y2 + z 2) and admits separating variables, which leads to 
three equations of the type of the linear oscillator. Therefore the energy 
levels are 

e l  = hoh(nl + n2 + n3 + 3) ~ htol(n + 3). (41) 

In this case, there are (n + 1)(n + 2)/2-fold degeneracies of nth level, 
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which is equal to the number of combinations by which n may be represented 
in the form of the sum of three integer (including zero) positive numbers; 
that is, just (n + 1)(n + 2)/2. The wave function of the stationary state is 

~n,nEn3 =const'exp(-P2~)Hnt(kx)H~2(hY)H,3(hz) (42) 

where H~(x) are the Hermitian polynomials and p = mv/--~l/h. 
On changing the sign of the coordinate, the polynomials H~ are multiplied 

by (-1)n;  therefore the parity of the function (42) is ( - 1 )  nl+n2+n3 ---- ( - - 1 )  n. 

Making use of  linear combinations of these functions with the given 
sum nl + n2 + n3 = n, one can form functions 

~t ,~ = const, e-oEAC2r~Ol,~(O)e *-im~ (43) 

Here 0t,,(0) is given by expression (37), and m = 0, 1 . . . . .  l, where 

0, 2 . . . . .  n for even n 
l =  1,3, , n  for o d d n  

It is obvious that the latter is defined from a comparison between the 
parity ( -  1) ~ of the function (42) and the parity ( -  1) t of  the function (43), 
which should be equal. In this manner, possible values of the orbital momenta 
corresponding to considerable energy levels are defined. It should be noted 
that in our case the energy levels of (40) are richer with respect to the usual 
spatial oscillator problem. Indeed, our true energy levels are given by 

[ ( 3 ) ~ /  I n  -2 ( 3 )  2 
(Enl)l,2 = e_ 2 mc 2 ___ c h n + 11 + ~ - ~ -  rffZh 2 n + 

ro 

2m rff2h2 n + (44) 

in accordance with formula (41). 
Let us consider the second case, where the main contribution arises 

from formula (12). Assuming again • = 3 and N = 0, we get 

where 

2m(l ) Aq~ +--~ ~2--'~ mto~ r2 ~ = 0 

) E 2 - ~  - ~  - -  m c  2 , 
3,) 

0,5-- e-Gm 

(45) 
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The energy spectrum now acquires the form 

4 f m c 2 + 2 h c ( n + 3 ) ~ / [  ro 2 3) c 2 - ~ ]  2 (E2),,z = e ~ _ 9h n + - 3 

- - -  n + ( 4 6 )  
m 

For completeness we consider again the case where both formulas (12) 
and (16) give the same order of contribution to the quantities E' and U'(r) 
in (33), that is, • = 3 and N = 1, and therefore 

( 2 5 r 2 )  l mto~r2, r  , =  
ro 

For the given case, the energy spectrum yields 

(E3)1,2 = ~ m c  2 +. n + 2 + - - -  

-2mr---~o n +  

7,) 
to] = r'-~ 25m 2 c2 

4 m2r~ "2 n + 

(47) 

Assuming r0 = h/mpc and collecting these three cases, we have: 
1. (E~)t = e-2mc 2, 

(E~. )2=e-2[mcz-m2C2(n+31 z] for N = 3  (4ga) 
L \ Z ] _ l  m 

2. (E~.) l = �89 2, 

(E~,)2=e ~rac 2 - 3 6 ~ m  n +  for N = 0  (48b) 

3. (E3)t = 3mc2, 

3 mZ, c 2 ( 3 )  2 
(E3)z = ~ m c  2 + 2 5  n +  for N =  1 (48c) 

m 

We see that fluctuation of the space-time metric around the hadron 
matter caused by the random string field yields a very varied spectrum of 
excited hadron states. Among them there exist states with enormously high 
energy levels, depending on the Euler number. 
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5. QUANTUM FIELD DESCRIPTION OF CONFINED QUARKS 
AND GLUONS 

5.1. The Confinement Potential and Propagator of Confined Particles 

The field concept description of the quark and gluon inside the hadron 
is carded out by the same principle as is applied to the construction of the 
usual theory of interacting particles, for example, photons and electrons. 
Notice that, in contrast to the familiar constituent quarks, there is no talk of 
the gluon as a "constituent." The concept of the gluon field is just needed 
to formulate a description of hadron matter by means of interacting quan- 
tized fields. 

The fundamental quantity in the field theory is the particle propagator, 
or Green function, which reflects the causal connection of quantized fields 
propagating between points of space-time. 

To define this quantity in our case, we recall the well-known fact that 
the form of the potential in the static limit is connected with the form of the 
particle propagator. For example, the Coulomb and Yukawa potentials are 
responsible for the existence of photon and scalar particle-transmitting quanta: 

e _ e I d 3 p e i p r l  
47rr (2-rr) 3 p2 (49) 

g e_mr - g f d 3 p ~ p  r 1 
47rr (2703 .] m 2 + p-------i (50) 

Without loss of generality, we do not consider the tensor structure of the 
interacting confined particle propagator, and define its form in accordance 
with the general rules (49) and (50). For this purpose, we define the confine- 
ment potential, in our case due to the self-referential effect, the contributions 
to which arise from both the energy value (16) and the external potential 
(12). The full potential is exactly defined from the total energy (22a) of the 
particle when it is at rest. That is, 

U, ot(r) = O(r 2) = 4-~ro 1 - ~oo] 

Lo, 
+ 4 r0 702 ' 

O--<r<ro  

r o < r < o o  

(50 

where gl = 4"rrr0mc2p ' and g2 --- 2~rromc2p. 
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In the general case, the quantities P', P, and ro depend on the external 
hadron momentum Q, 

{ } p' = exp a~(l - "Q2/c2) (1 - N) , 

p = (034,  

ro= [4,rrot~(1 -- cQ-~)] 1/2 

Thus we have the integral equation (r2~1/2 (r2) 
gl 1 -  + g2 1 -  

4"tr ro r--~o 2 ] 4"rrro ~02 

c , f  I (271.)3 d3p eiprDl(p 2) + ~ d3p eiprD2(p 2) 

To solve this equation, we integrate it over the angular variables. The 
result reads 

gl 1 - + g2 1 - 
4"rrro ~o 2] 4"rrro ~o 2 

2~2r dp p sin pr [Cl Dm(p 2) + c2D2(p2)] (52) 

This integral equation has the unique solution 

"trro 2 J2(r0 v /~)  g2v/~r~Jscz(ro,~)  
D(P 2) = gl 2 (ro,v/~) 2 + ( r o , ~ )  5r2 (53) 

Here we have chosen the constants Cl and c2 in such a way that equation 
(52) holds at the choice of the function (53), and J2(x) and Jstz(x) are the 
Bessel functions of the order of 2 and 5/2, respectively. 

It is natural to generalize expression (53) for the relativistic case 

D(p 2) = -~- r~)g,(ro~Z--p2)-2J2(ro-q/'~) 

+ ,j~r~)g2fro~-p2)-st2Jst2(ro-~-~) (54) 

and for the particle with mass M (i.e., a gluonlike particle with mass M) 

Du(p2) = ~ r2 gl(rov/--~ _ p2)- 2j2(rov/-~ _ p2) 

+ v/~r~g2(rov/-~ _ p2)-s/2jsa(roff- ~ _ p2) (55) 



Nonlocal Confined Quarks  461 

where p2 = p2 ~ _ p2. The latter gives the oscillation potential 

r gl 1 {1 2\1/4 
JI /2 (M~/r2-  r 2) 

= ~  , g2 1 [ r 2 - - - 7  

0 

for 0 ~ r < r 0  

for ro >- r < oo 
(56) 

where 

or 

VM(-p2r2) = � 8 9  - p2) 

+ ~ p , 3 ( r o ~  _ p 2 ) - u 2 j s : 2 ( r o ~  _ p2) (59) 

Vo(-p2r~) = VM(--p2r~) I M=o (60) 

G~ 2) and G~ 2) are the usual local propagators of gluons and massive 
gluons, respectively. We call the latter color Z-like bosons. We see that the 
propagators (57) and (58) possess some interesting properties: 

1. They are entire analytic functions on the variable p2. 
2. Their order of growth is p = 1/2. 
3. They decrease rapidly enough in the Euclidean directions p2 ~ -oo. 
4. They have no poles in the complex plane p2, so that force-transmitting 

quanta corresponding to these propagators are never observable. 
5. Wave functions of these quanta are spread out over space-time, 

nonloc f G~ (x) = d4y Ko(x - y)G~(y)  (61) 

f 
= J d4y Km(x - y)Z~(y)  (62) 

where Ko(x) and Kin(x) are nonlocal generalized functions (Namsrai, 1986), 
the Fourier transforms of which are defined by [Vo(r~p2)] 1/2 and 

If we assume that force-transmitting quanta giving the confinement potentials 
(51) and (56) are gluons and Z-boson-like objects (gluons with mass M), then 
expressions (54) and (55) may be written in the convenient form (inserting the 
tensor structure, which is formed by using the Lorentz and color indices) 

D(p 2) =:~ G ~ ( p )  = Vo(-p2r~)G~ (57) 

D,~(p 2) =~ G ~ ( p )  = VM(-p2r2)G~ (58) 
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[Vm(r2p2)] 1/2, respectively. The local wave functions of gluons G~(x) and 
color Z-like bosons 2~(x) yield the usual propagators 

(OITlG~(x)Gv(y)}lO) = 1 AO( x _ y) 
i 

(OtT{Z~(x)2.~(y)}lO) 1 M = - A,v(x - y) (63) 
t 

by means of their T-product operators in x space. 
Concerning the quark propagator, it should be constructed by the same 

procedure as just been defined for the gluon one. Thus, the confinement 
propagator for the quark takes the same form as (57) and (58): 

SR(P) = V,,(-P2r~)S~ (64) 

where ~O(p) is the usual local propagator of  the quark, which is used in QCD, 
and the form factor Vm(-p2r 2) is given by expression (59), where M should 
be changed to m, the quark mass. Thus, we see that the confinement potential 
due to the induced gravitation of "hadron" strings leads to a new type of 
"strong" interaction in which there exist two decreasing coupling constants 
gl = 4xrromqC 2 and g2 = 2~rrom~c 21m3 at N ~ ~ and I Q I ~ c [Euler(M) = 
2 - 2N, Q is the external momentum of the hadron]. The corresponding 
force-transmitting quanta become nonlocal and unobservable, and their propa- 
gators are entire analytic functions. The quantum field theory for such interac- 
tions is constructed by means of the Efimov (1985) method in which there 
are no ultraviolet divergences. 

5.2. The Lagrangian Function of the Confined Particle and Its 
Quantization Procedure 

5.2.1. Definition of the Corresponding Rule 

Without loss of generality, we consider a one-component confined scalar 
particle with mass m and the propagator 

Vm(--p2r2)A(p) (65) 

where A(p) is the usual propagator of the scalar particle in the momentum 
space. The question arises of how to find the Lagrangian ~ of such a field 
by knowing its propagator. 

We act as follows. As is well known, in the traditional approach to the 
description of the quantum field, the initial object of  construction is a given 
Lagrangian by which the propagators and vertices are formed. Let us consider 
the most general Lagrangian 
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~(x) = r162 + �89162 + ~e~(r r ,~) 

The t~i and ~Pi denote sets of complex and real fields that may be scalar, 
spinor, vector, tensor, etc., fields. The index i stands for any spinor, Lorentz, 
isospin, color, etc. V and W are matrix operators that may contain derivatives, 
and whose Fourier transform must have an inverse. The interaction Lagrangian 
is allowed to be nonlocal, i.e., it depends not only on fields at the point x, 
but also on fields at other space-time points x', x" . . . .  The coefficients in 
the polynomial expansion may be functions of x. 

The explicit form of a general term in ~ ( x )  is 

f d4Xl gili2 (x, x 1, x 2 . . . .  )0~l (Xl )  I~Jim(Xm) q)in(Xn) d4Xn o o o  o o Q  o o o  D g 6  Q o l  ~ m B 

The K may contain any number of differential operators working on the 
various fields. Roughly speaking, the propagators are defined to be minus 
the inverse of the Fourier transforms of V and W, and the vertices as the 
Fourier transforms of the coefficients K in ~r  [for details, see t 'Hooft and 
Veltman (1973)]. 

For example, the propagators are minus the inverse of the operator found 
in the quadratic term: 

1 
,~  = 2 q~(X)[r- 1 _ m2]q~(x)  =:~ ( m  2 _ p 2  _ ie)-I 

m - i O  
= ~(i0 - m)0 m 2 _ p2 _ ie 

In contrast to the usual theory, in our scheme, the starting point is provided 
by the propagators (57) and (58) of entire analytic functions, and therefore 
we attempt to construct Lagrangian corresponding to these by using the 
above-mentioned rule. Thus, for the scalar particle case one gets 

Vm(p2r~)  1 
m 2 _ p2 _ ir ~ ~ f  = 2 d~(x )E(O)~(x)  (66) 

where 

r-i - m 2 

+(x) = K.,(D)q~(x), E(t3) - Vm(r2O ) (67) 

The operator KIn(D) in (67) is nonlocal and may be represented in the form 

Cn x. , (o)  = (r )n 
gT=O 
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The generalized function Km(x - x ')  = K(O)~t4~(x - x ')  in (61) and (62) 
belongs to one of  the spaces of the nonlocal generalized functions considered 
in Efimov (1977, 1985). In the general case, when there exists some interaction 
term gU(d~(x)) describing the self-interaction of the confined scalar field ~b(x), 
we have 

= �89 + gU(+(x)) (68) 

Our next problem is to quantize this system. We use the Efimov (1977, 
1985) method. Formally, the equation of motion reads 

E(D)~b(x) = - g U'(d~(x)) (69) 

for the interacting field and 

[] - m 2 
e(o)+(x) - ~ . , ~ - j  +(x) = 0 (70) 

for the free field. 
For convenience, in what follows we omit the index m on V,,(-/ZD). 

The problem is how to understand these equations, how to study and solve 
them, and how to perform the quantization of the field ~b(x). We introduce 
a certain regularization into the classical Lagrangian in a way that permits 
us to carry out the usual canonical quantization. This quantization leads to 
the appearance of additional ghost states with indefinite metrics. The ghost 
states disappear when the regularization is removed, but a trace remains, 
namely the propagator of the scalar particle becomes nonlocal according to 
(65). Thus, instead of  (69) or (70), we consider the regularized equation 

E~([])+~(x) = - g  U'  ( +~(x) ) (71) 

or, in the case g = 0, 

E~(D)dpS(x) = 0 (72) 

Here ~ is a parameter of  the regularization such that 

13 - m 2 
lim E~(D) = E(D) -- (73) 
~=o V(r~D) 

Instead of the Lagrangian (68), we obtain 

~(x)  = �89 + gU(+8(x)) (74) 

The regularization is chosen in such a way that the function 

k 2 - m z 
E~( k~) - _ _  

V ( -  r~k 2) 
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has zeros in some set of points: 

E~(k  2) - -  ( k  2 - m 2) ~ [ k  2 - m~(a)] ( 7 5 )  
j = l  

so t ha t  m~(B )  > 0 ( j  = I ,  2 . . . .  ) a n d  m ~ ( B )  :=~ oo w h e n  B :=~ 0. 

Then the field ~ba(x)(a > 0) can be quantized by methods using indefinite 
metrics (Pais, and Uhlenbeck, 1950; Nady, 1966). The Hamiltonian Ho ~ and 
the vector space of states H a with indefinite metrics can be constructed for 
the free system when B > 0. Further, the SS-matrix, and also different operators 
such as the current 

the Green functions 

ja(x)  = i [ fS~ l f~8(x ) ]S  ~+ 

G~(x - y) = (01T[~(x)~(y)]  I 0) 

and the Wightman function 

W~(x~ . . . . .  x.) = (01r --- ~ ( x . ) t O )  

can be found for the confined interacting system. 
By definition, we consider that when 5 ~ 0 the limits of all these 

physical quantities are the quantum field solution of the initial system (68). 
The problem indicates such a regularization procedure, which provides the 
existence of the limits of all operators and matrix elements for all physical 
quantities at 5 ~ 0. 

This means that we have to obtain a self-consistent theory in the limit 
B=~0. 

5.2.2. Regular i za t ion  Procedure  

Let us consider the regularized function 

u . ( z  - 1)" } 
v ~ ( - z x )  = ~ --II.+2rZ --  g~'~-TZ- 

n = 0  [ .  j=l [ 1  - -  ~] t z  - 1 ) ]  

~ ( - 1 ) " u . ( z  - 1)"[F(n + 3)] '~ 
= ~ ~ . ; - 2  - -  _-- - - -  - .=o a II~=~ [z o,j(a)] 

[p is the growth order of V(-r~k2)] instead of the function 

V(-r~k 2) = ~ vn(k 2 -  m2)"r 2" 
n = O  

(76) 
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where we have denoted 

Z = k2/m 2, k = m 2 r  2, 

I~j(a) = 1 + j " l t r  

From the form of the function 

E ~ ( z )  = ( z  - l)lVS(-zX) 

it follows that the function 

U n = Vn hn, cr < lip --< 2, 

(77) 

The numbers Aj(~) satisfy the condition 

oo 

~] ( -  l)JAj(~)[la.j(~)] 'v = 0 
n = 0  

Cnj = 
[F(n + 3)1 ~ 

l - I J -  I r ;o- "~r n + 2  i=0u - I )IIk=i+l(~ - - j " )  

for N = 0, 1, 2 (82) 

The inequality ('T Hooft and Veltman, 1973) 

(81) 

where 

Aj(5) = ~, u.c.j(j"/~)" (80) 
n = m a x ( 0 , j  - 2) 

- VS(-zk--~) (78) 
E~(z) z -  1 

is a meromorphic analytic function in the complex z-plane and has simple 
poles at the points 

= l x j ( ~ ) =  1 + ~  ( j =  1,2 ) Z 

and decreases as [except the ray (z: arg z = 0)] 

I/E~(z) ~-Iz1-3 x~ (_ l ) , ,~ - , , -2Un[ i , (n  + 3)],r 
n = 0  

when I zl ~ ~. Here the series converges (Efimov, 1977). For the meromorphic 
function (78) the following representation is valid: 

I/E~(z) = j=0 ~ [ z  ~ ~j- -~J  (79) 
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cons t ,  exp{B(j~/~) In} 
Aj(~) --- 

F((2 - or)j) 

is valid for the number Aj(g) at large j, where B is some number and (l/2)tr 
< 1 .  

Let us now consider the function 

D~(k 2) = _ [ES(k2)]- l 

which has the following properties. 
(1) It is a meromorphic analytic function in the complex kZ-plane and 

has simple poles at the points 

k2=m2(g)=m21,z~{~)=m2(1 + ~ )  ( j =  1 ,2  . . . .  ) 

(2) The residues of D~(k 2) at these points are given by 

Res DS(k 2) = (--1)J+IAj(~), " k 2 = ~ ( ~ )  

(3) When I kZl ~ oo in all ~ planes [except the ray (m 2, oo)] 

V6(-k2r~ ( ) - - O  1 
DS(k 2) - (m 2_  k 2) 

(4) The function D~(k 2) may have zeros at the points 

k 2 = a r  (r = 0 ,  1 ,2  . . . .  ) 

(5) 

V(-~r~) 
lira D~(k 21 - ~ - -~-)  
~o 

i.e., it becomes an entire analytic function in accordance with (59). 

5.2.3. Quantization of the Regularized Equation 
Let us consider the classical system described by the Lagrangian density 

~ ( x ) ,  (74), where the regularized operator Es(D) satisfies the properties 
enumerated above. According to the principle of stationary action, the wave 
equation for the system described by (74) has the form (71). It is a differential 
equation of infinite order, i.e., it is an integral equation. 

In order to solve the Cauchy problem we have to know the values of  
the function ~b~(x) at all its derivatives at the initial time. 

We analyze the solution of this equation following the scheme proposed 
by Pais and Uhlenbeck (1950). Let us introduce the system of fields 

+~ = [Aj(8)ll/2{~(o)}~bS(x) (83) 
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where the coefficients Aj(g) are introduced by formula (80), 

m](g) = m2(l + j"lg) (j  = O, 1, 2 . . . .  ) 

and 

(84a) 

~ ( n )  = E~(~ 
[rn - m](~)] (84b) 

According to definition (83), the fields dO,(x) are not independent for 
different j and they satisfy the relations 

[Aj (~i)] ~'2 { ~ (rn) } dO~(x) = [A,{8)]'/2 { ~-~ (u) } dO,(x) 

The field dOS(x) can be expressed as 

dOS(x) = ~ (-1)J[Aj(~)]lc2do~(x) 
j=O 

In fact, on the one hand, the chain of equalities 

j=O 

is valid. On the other hand, using (85), it is possible to obtain 

dO,(x) = [Aj(~)]'t2~j(O) ~ (-l)i[A,{8)]'t2dO~i(x) 
i=o 

= ~ ( -  O'[a,{~)]"Z[a,(~)]la~i(o)dO,(x) 
i=o 

= i=0 ~ (--1)i m-- mi(g)J 

(85) 

(86) 

On the basis of the correlations (83), (85), and (86), the Lagrangian 
density can be expressed in terms of the fields do,(x) 

1 = 
~S(x) = 2 -~0 ( -  lYdo~(x)[n - m](~)]do~(x) 

~'--~0 )/[Aj( dO,()} + gU ( -  1 8)] lt2 x (87) 

Assuming the fields q~(x) to be independent variables, and making use of 
the principle of stationary action, we obtain from (87) the infinite system 
of equations 
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[r3 - m}CS)]~b~Cx) = -g[Aj~8)] mU' ( -  l)i[Ai(~)] l/2~bp(x) (88) 

The system of equations obtained here is equivalent to (71). Indeed, first, 
the relation (85) results directly from the system of equations (88); second, 
(71) is fulfilled if ~b~(x) is connected with the fields ~b~(x) by the relation 
(86), and making use of (86), (85), and (88), it is easy to verify that 

E~(n)~b~(x) = E~(D) ~ (-1)J[A~)]'/2~b~(x) 
j=o 

= i=oE ( -  1)/[AJ(8)]m i A ~ ) - ~ L  }[A,(~)] ~,.~bJ(x) 

[] - m2(~) 
- [Ai(~)-~ E (-1)JA,{~)~-~J~br(x) 

j=0 

= [c3 - m2i(8)][A,(8)]-md~i(x ) 

= -gU'(c~8(x)) 

where i = 0, 1, 2 . . . . .  
Thus the Lagrangian (87) and the system of equations (88) are completely 

equivalent to the Lagrangian (74) and (71). Therefore, one can assume that 
our initial system (74) is described by the Lagrangian (87), where the fields 
~b~(x) are independent and satisfy the equation of motion (88). The method 
used here is well known in the theory of differential equations. It is used in 
general when a differential equation of the highest order is replaced by a 
system of differential equations of the first order. All the above arguments 
concern classical field theory. The quantization of the system of classical 
fields {~b~(x)} can be performed according to the canonical procedure of 
quantization. Let us introduce a momentum field conjugate to ~b~(x, 0), 

1-I~(x, 0) = [ 8 / ~ ( x ,  0)] f d3y ~ ( y ,  0) = ( -  1)/~b~(x, 0) (89) 

The dot denotes the differential with respect to time: 

0 ~b~(x, t)It=0 @(x,  o) = 

We treat d~ and l-I~ as operators with the commutation relations 

[,l,~(x, o), @(y, o)]_ = [17y(x, o), rI~(y, o)]_ = o 

[d~(x, 0), II~(y, 0)]_ = i S o S ( x  - y) (90) 
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or  

[(b~(x, 0), 6~S(y, 0)l-  = i(-1)~0~3(x - y) (91) 

It is seen that the indefinite metric is to be employed to quantize our system 
in a regular manner (Nady, 1966). As we are unable to solve the system of 
equations (88) exactly, our problem is to construct the perturbation series for 
the S-matrix and we perform the quantization of the noninteracting system 
of fields {~b~(x)}, i.e., the case when g = 0. Instead of (88) we have 

[D - m2(8)]d~(x) = 0 (j = 0, l, 2 . . . .  ) (92) 

The solution of these equations can be written in the form 

~b~(x) = (270 -3/2 f d3k ~ -t/2 -,~a [2cohd (djl, e + d~,e a'x) (93) 
3 

where 

to~ = [k 2 + m2(~)] 1/2 = [k 2 + m2(l  + fr /~)] l /2  

From the quantization conditions (90) and (91), the operators dlk and d~ satisfy 

[a:,.  a:k.]  = a;:k.] = o 

[dj~,, dTw] = (-1) /~j /~(k - k ' )  (94) 

The Hamiltonian of the noninteracting system can easily be obtained. Let us 
write it in the normal form 

H~ = ~ ( - 1 )  i d3k ~ + 
j=O 

consideration consists of  quanta with the following The system under 
mass spectra: 

Let us define 

f m , 
m2(5) = ira2(1 + f l /~),  

j = 0  
j = 1, 2 . . . .  (96) 

d0k = ak and dd+k = aft (97) 

When ~ ~ 0, the masses of  quanta withj  = 1, 2 . . . .  go to infinity, according 
to (96). These quanta are called ghost states or ghosts. The quanta with j = 
0 have finite mass m. We call then normal particles or scalar particles with 
mass m. The space of states H a is a vector space with indefinite metric. It 
consists of: 
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(1) A vacuum state 10) that is unique, defined by the conditions 

dj t l0)  = 0 and normalized by (010) = 1 

(2) One-particle states I j ,  k) = d~10), which are normalized by 

(j, k l j ' ,  k ' )  = ( -  l)JSjj,5(k - k ' )  

and are eigenstates of  the Hamiltonian H~, 

H~ I j ,  k) = co~, I j ,  k) 

(3) Many-particle states. If there are n particles with momenta  k~ . . . . .  
k~ and among them there are vn, v2 . . . . .  v,~ (n = vl + v2 + "'" + v,~) 

identical particles, i.e., with the same index j ,  then the following is given: 

In) = ljl, kl ..... j~, k.) = (vl! "'" v,~!)-I/2d~k, "'" d~knlO) 

These states are also eigenstates of Ho~: 

HSoln) = (co~,k, + ... + r 

All these states generate a complex system of  eigenstates in the vector space 
H~o, i.e., 

(*)Dee = 10)(01 + ~ (--1)/l+'' '+jn d3kl " "  d3kn In)(nl = 1 
n =  I j l , . . . , j n = O  

What happens with the space H a when 8 ~ 0? At ~ :=~ 0, the masses of  
all ghosts increase according to (96). Therefore,  if any physical state is 
characterized by a definite value of  energy, then in the limit ~ :=~ 0 no physical 
states with arbitrary but finite energy can consist o f  ghost quanta. In this 
sense we have 

lim H a = H (98) 
8:=~0 

where H is the Hilbert space which contains (1) a vacuum state 10), akl0)  
= 0, and (2) single- and many-particle states 

In) = Ikl, . . . ,  k , )  = ~,"'I/HU~-1/2~+t~k I " '"  a~-nl 0) 

All these states generate the complete system in H: 

(*)Def = S0)(01 -t- ~ d3kl "'" d3k,, Ikt . . . . .  k,,)(kl . . . . .  k,I  = 1 
n = l  

5.2.4. Green Func t ions  o f  the F ie ld  ~8 (x )  

First let us consider the commutator  

A~(x - y) = [ ~ ( x ) ,  q ~ ( y ) l -  (99) 
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Substituting the representations (86) and (99) and using (93), we obtain 

AS(x) = ~ (-- I)JAI(8)Aj(x ) (100) 
j=0 

Calculation of the explicit form of the different two-point Green functions 
is carded out in many textbooks of field theory (see, for example, Bogolubov 
and Shirkov (1980). We use here their results. Thus one gets 

A~(X) = (271") -3  f d4k ~(ko)~(k 2 - -  m2(8))e -i~ 

_ 1 fi(Xo)~(x2)___(x2)_lt20(x2)jl(mj(~)(x2)l/2) (101) 
2"tri 4~'i 

where 

{ 1  t > 0  0(t) = {1 t > 0  
~( t )=  1 t < 0  t < 0  

Because the series (100) converges absolutely, we have 

A S ( x ) = 0  when x 2 < 0  

Thus the operator cI)S(x) satisfies the local commutation relations. 
Let us now introduce the functions A~(x) according to 

A~_)(x - y) = A~+)(y - x) = (Ol~S(x)~S(y)lO) 

(102) 

We have 

a (x) = 
j=O 

(103) 

where 

( 
A~_+(x) = (2-rr) -3 J d4k 0(~-ko)~(k 2 - m2(8))e -its': 

For x 2 =~ 0 one obtains (Bogolubov and Shirkov, 1980) 

i 1 m ] [m21x21"~ ( i m ~  
A~___(x) = -~- -~  E(-T-Xo)0(x 2) -- --4,rr2x 2 + 1-~2 l n ~ )  + \ 16-rr] 

X r 2) + O(x 2 In x 2) 

Substituting this expansion into (103), we obtain 
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m 2 :~ 
A~_)(x) - 1 6 w z ~  ~ (-lyAj(5)l~j In p,j + O(x 2 In x2), i~1(~) = 1 + ~  

Here we have used the correlations (82); hence it appears that the function 
A~• is finite at x = 0 and that 

m 2 
A~_+)(0) - 1 ~ 2  j__~o (--1)JAj(8)p.j In Ixj < ~ (104) 

This means that the operator ~a(x) is well defined because of 
(01 (P~(x)~(x)10)  = A~_)(0) < o:. 

Let us consider the causal Green function 

A~(x - y) = (OIT[Cb~(x)tl)~(y)]lO) = ~ ( -  1)/Aj(5)A~c(x - y) (105) 
j=0  

where 

A~c(x - y) = -i(27r)-4 f d4k e-ikx[m~(8) -- k 2 _ ie]-I 

Otherwise 

A~(x) = -i(2~r) -4 I d4k 7X~(k2)e-i~' (106) 

where 

~ ( k  2) = ~ ( -  lyAj(~)[m2(5) - k2 _ i~]-~ 
j=O 

oo 

= [mE -- k2 - i~]-l ~ ~"+~ 1 v"r~(k2 - m2)" 
n=o l l j = l  [ - J- 'rm-2~( m2 - k2 + i~)] ( 1 0 7 )  

The funct ion/~(k 2) is analytic in the complex k 2 plane for Im k 2 - 0 and 
has simple poles at the point k 2 = m2(8) - it ( j  = 1, 2 . . . .  ). The retarded 
and advanced Green functions can be defined in the following way: 

A~,(x) = 0(Xo)AS(x) = At(x) + A~+)(x) 

aa~d~(x) = - O ( - x o ) a S ( x )  = a~(x) - A~_)(x) (108) 

They satisfy the conditions 

A~t(x) = 0 for ( x2 < 0 
x 2 > 0 ,  X o < 0 .  

A~a~=0 for [ x2 < 0  (109) 
X 2 > 0 ,  X 0 > 0  L 
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Thus we can see that all Green functions satisfy all requirements of the local 
quantum field theory. This means that the field ~ ( x )  is local. The following 
usual correlations are valid for the regularized Green A~(x) and A~_~)(x) 
functions: 

a~(x) = 0(x0)A~_~(x) + 0(-x0)A~+)(x) 

A~*(x) = O(xo)A~+)(x) + O(--xo)A~_)(x) (1 10) 

5.2.5. The Interacting System Before Removal of the Regularization 

The interacting confined system is described by the Lagrangian (87). 
The total Hamiltonian of this system has the form 

H s = n o  s + H~n (111) 

where H~ is given by the relation (95) and 

HSi" = - g  I d3x :U(~ (x '  0): (112) 

In the interaction picture, we have 

n~,(t) = e-i'tt~nSinei't4~ = - g  I d3x :U(~I}S(x' t): (113) 

Although the operator ~ ( x )  is well defined, as we showed in the previous 
section, the Hamiltonian H~n(t ) is not defined, since the theory is transla- 
tionally invariant and thus there are difficulties connected with the Haag 
theorem (Wightman, 1964). It is necessary to introduce the operation of 
"switching on" and "switching off" the interaction g: 

g ~ g  , = g  

Such a regularization simultaneously takes into account first that our system 
is situated in a box, violating Euclidean invariance, and second that the 
interaction is adiabatically switched on and switched off at infinity, i.e., when 
t ~ _+~. The large parameter L defines the intensity of switching on the 
interaction. The function g(x) satisfies the conditions: 

(1) o <- g(x) < g 
(2) g(0) = g 
(3) [dng(x)]x=o = 0 for n = 1, 2, 3, 4, where d" = 0~,j . . .  at," 
(4) f d4x g(x) < 
(5) g(x) ~ Z~ for ct < 2p/(2p - 1) = 

where p = 1/2 is the order of growth of the nonlocal form factors (59) and (66). 
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Removal of the regularization corresponds to the limit L ~ oo, at which 

lim g(x/L) ~ g(O) = g (114) 
L=)o~ 

Thus the Hamiltonian (113) in the interaction picture takes the form 

H!]'L)(t) = --I d3x g(xlL, tlL) :U(~(x ,  t)): (115) 

We recall that when 8 is positive, then the Hamiltonian (115) is well defined, 
so that it is not necessary to introduce any ultraviolet cutoff. The regularized 
S-matrix can be written in the standard form 

S&L = T exp{- i  I~| dt H~X)(t) ) 

=Texp{ild4xg(xlL):U(dPS(x,t)): } (116) 

Here T has the meaning of a strict ordering operator of the quantized fields 
�9 ~(x) with respect to time. The chronological pairing of the Green function 
of the operators ~S(x) is given by formulas (105)-(107). Since the operators 
�9 S(x) and H!Sn 'c) are well defined and local, then the S~,L-matrix on the vector 
space H a is unitary and microcausal, i.e., 

S&L(SS"L) + = S ~'L @~ (S~) + = 1 

8g(x) [ 8 - ~  (S~'L)+ = 0 when x ~ y (117) 

[for details, see Alebastrov and Efimov (1973, 1974)1. 
The typical problem of nonlocal quantum field theory consists in proving 

the existence of the following sequence of limits in each perturbation order: 

S L = lim S 8z, S = lim S t (118) 
8=:*0 L ~  

Here the first limit 8 ~ 0 means the removal of  all ghost states from the 
theory. The second limit L ~ ~ means the passage to infinite volume and 
switching on the interaction over all four-dimensional space. 

5.2.6. The Green Function in the Limit 8 ~ 0 
The Green function in the limit 8 ~ 0 is the generalized function that 

is defined on a space of test functions 7_~. Therefore, we have to consider 
improper transitions to the limit, i.e., investigate the limit 

lim l d4x A~(x)f(x ) = lim f d4k A~(k)f(k) (119) 
8===~0 8 ~ 0  
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where A~(x) is the Green function and f ( x )  �9 Z~. Omitting some details of 
the estimations (Efimov, 1977, 1985), one can obtain 

lira ( d4x A~(x)f(x)  
8 4  3 

--,ira f i ,r' 
~==~0 J j=O 

I 7(k) 
= lim i-t(2~)-4 d4k m 2 k 2 ie 

~{I-[~ v ' l r ~ ( k 2 - m 2 ) "  } X ~ n*z 
n=o =1 [1 -- ~m-2j -O(k  2 - m 2 + ie)] 

= i-I(2~)-4 I d4k V ( - r ~ 2 ~ ( k ) [ m 2  - k2 - ie]- j  

because of f (x)  �9 Z~. 
Thus the causal function A~(x) changes in the limit ~ ~ 0 into a nonlocal 

confinement propagator: 

lim A~(k) = Dc(k 2) = Vm(-r~k2)[m 2 - k 2 - ie] - t  (120) 
5==,0 

The function/)c(k 2) has no single poles at k 2 = m 2, in accordance with the 
function (59). However, the poles corresponding to all ghost states have 
disappeared. 

The function (120) is the entire function and it does not correspond to any 
"real state." This function describes the nonlocal and confinement character of 
the interaction of our spread-out particles inside the hadron. 

Thus in the limit ~ ~ 0 our theory becomes nonlocal. In other words, 
the "ghosts" (which disappear in the limit ~ =# 0) as a self-memory make 
the theory nonlocal. Consequently, the nonlocal and confinement character 
of the interaction of the classical field (68) is revealed in quantum field 
theory as a residual effect of the nonphysical ghost states when these ghosts 
are removed by the transition to the limit ~ ==> 0. 

6. NONLOCAL E L E C T R O M A G N E T I C  INTERACTIONS OF 
CONFINED QUARKS 

6.1. Introduction 

Before we construct a nonlocal quantum chromodynamics, we consider 
a simpler system: the interaction between a nonlocal photon and a confined 



Nonloca l  C o n f i n e d  Q u a r k s  477 

quark. As shown above, in the case of the scalar particle the Lagrangian 
density (68) for the extended field ~(x) = Km(r~::~)q~(x) is equivalent to the 
usual standard form 

L = �89 - m2)q~(x) + gU(Km(r2D)q~(x)) (121) 

with the nonlocal interaction term in accordance with the regularization 
procedure B: 

(a) The commutator A~(x) = [~S(x), ~s(0)]_ changes into the commuta- 
tor of the scalar field q0(x) 

lim AS(x) = A(x) = (2xr) -3 I d4k ~(k0)8( k2 - m2) e-ikz 
~ 0  3 

and 
(b) 

lim A~(x) = A_+(x) = (2"rr) -3 f d4k 0(~k0)8(k: - m:)e - ih  
8 ~ 0  g 

in the improper sense. 
(c) The existence of  these limits means that there exists a weak limit: 

lira ~ ( x )  = ,#(x), (t~ - m2)q~(x) = 0 

(d) All ghost states disappear in the limit 8 ~ 0, i.e., 

lim H ~ = H 
s=,o 

Thus the initial Lagrangian describing the electromagnetic interaction of the 
quark may be chosen in the form 

�9 ,~(X) = ~ 0 ( X )  "[- ~ i n ( X )  

1 
~(x )  = --~ :[O~A~(x)][O~A~(x)]: + ~ :aIrj(x)(i0 - my)~j(x): 

J 

~in(X) = e :~I?R(X)/~R(X)~R(X): (122)  

where A~(x) and ~ ( x )  are the nonlocal fields of photons and quarks. The 
summation in the expression ~0(x) extends over all quark fields (j = u, d, 
C~ . . .)~ 

There are various approaches (Efimov, 1977; Namsrai, 1986; Moffat, 
1990) to the gauge-invariant description of the nonlocal interaction of fermi- 
ons (122). The theory with the interaction Lagrangian 

~ ( x )  = e :ffi(x),~R(x)~(x): (123) 

has been studied by Efimov (1977), where ~(x)  is the local spinor field. In 
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this theory the pure fermion loops are not regularized in a unified way, so 
the vacuum polarization diverges. 

The finiteness of these diagrams is achieved by using a special cyclic 
regularization procedure carried out over whole fermion loops [see Efimov 
(1977, 1985) for details]. 

Recently, the interaction Lagrangian 

~ ( x )  = e :~iR(X)fitR(X)~R(X) + "~'t (124) 

where ~t (~ ,  A~) contains higher order interactions necessary to restore gauge 
invariance, has been studied by Moffat (1990). The third scheme (Namsrai, 
1986) for the construction of the gauge-invariant nonlocal interaction of type 
(122) is based on the Feynman diagrammatic techniques, in which the gauge 
invariance of quark dynamics means that every matrix element of the S- 
matrix has a definite structure, and algebraic relations exist between them. For 
example, the following procedure (Namsrai, 1986) is based on Kroll (1966): 

(1) To satisfy the conditions of gauge invariance for the nonlocal theory 
(with changing propagators of quark and photon), one must change the form 
of the one-photon vertex 

~1~ ~ u,.(q, k) = -d, . (k)S~ I(dl) 

due to the Ward-Takahashi identity 

where 

k~O~(p, q) = SR(O) - SR(dl) 

(125) 

(126) 

Ol~(k, q) = ul~(k, q) = -du,(k)S~l(,~) 

(2) The proof of the validity of the nonlocal generalized Ward-Takahashi 
identity is 

where 

O~(p, q) = SR(p)u~(q, k)SR(gl) ( p  = k + q) 

Here SR(/~) is the nonlocal propagator of the quark and d~(k) is some operator 
whose actions on the entire functions are 

d~(k)V(-qZr 2) -- [V(-(q + k)2r 2) - V(-q2r2)]/~/~ (127a) /? 

d~(k)V-l(-q2r2o) = - V - ~ ( - ( q  + k)Er~)[d~(k)V(-qZr~)]V-~(-q2r 2) (127b) 

d~(k)SR(gl) = -SR(gl + k)[d~(k)S~(gt)]SR(dl) 
^ - 

= SR(?t + k)Ul~(k, q)SR(~) (127c) 
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(pr - q~)O~(p, q) = SR(/~) - SR(~) (128) 

where 

O~,(p, q) = SR(l~)U~,(q, k)S~(~l), k = p - q 

Taking into account the relation 

u~(q, k) = ~lr + (m -- d 1 -- fc)V-l(--p2r~) 

• [dr  (129) 

and equation (127) we get, after some calculations, identity (128). 
(3) The charged closed loop in the nonlocal theory (122) is determined 

by the expression 

I~I~(kl . . . . .  kn) = 1 1 d4q Vr{OnR(q; kl . . . . .  kn)SR(~)} (130) 

where 

O~(q; k, . . . . .  k.) = V(-q2r2)On(q; k, . . . . .  kn) 

SR([I.)O.(q; kl . . . . .  k.)Ss(~l) = ( - l )nd (kO "'" d(k.)SR(~) 

with Uo = S~l(~). Tensor indexes are omitted here. 

(131) 

6.2. The Construction of the S-Matrix for the Quark Dynamics 

Formally, with the interaction Lagrangian (122) the S-matrix can be 
written in the form of the T-products: 

S = l + i ~  1 

S. = (i")-' ~ d4Xl . . .  / d4x~ Ta~=l ~in(X) } (132) 

Here the symbol Ta means the so-called Wick T-product or T*-operation 
(Bogolubov and Shirkov, 1980; Efimov, 1977) and the lowercase d corres- 
ponds to the algebraic prescription determined in Section 6.1. In order to 
construct the perturbation series for the S-matrix (132) by prescription of the 
usual local theory, it is necessary to change (in the Feynman diagrams) 

m + / ~  m + f ~  Vra(-k2r2o) 
rn 2 -- k 2 - i~ m 2 - k 2 - ir 

gr z _ ie)-I ~ gr 2 _ i~)-t (133) 



480 Namsrai 

and at the same time to insert the modified vertex (125) into the vertices of 
the external photon lines. The calculation of the matrix elements for the 
charged-quark loops will be undertaken using formulas (130) and (131). 

For the purpose of calculation it is convenient to present the nonlocal 
form factor (59) in the Mellin representation 

1 f -~ - i~  d~ v(f;) r20~e~2(m 2 _ p2 _ i~)~, 
V~(-p2rg)  = 2ii J-f~+i. 

0 < 1 3 <  1 (134) 

where 

[ ' ]  2_2~_ , ,/-4 + p '  3 
v(O = - r(~---) r d  ~- ~) r(5/2 + 0 

(135) 

. . . .  2 and the regulanzatmn multlpher e ~ guarantees the passage to the Euclidean 
metric in intermediate calculations for the S-matrix elements. 

6.2.1. The Diagrams of  Vacuum Polarization 

In the gauge-invariant nonlocal theory the vacuum polarization at the 
second order of perturbation theory (Fig. 5a) is given by an expression of 
type (130), 

1" ie2 I s 2 2 Tr{O~(q; kl, k2)S~R(~)} II~(kj, k2) = ~ ~ d4q Vm(--q ro) 

(136) 

where k~ + k2 = 0, 

SR(gI2)O~,(q; kl, k2)SR(gl) = (-1)2d~(kOd~(k2)SR(gl), q2 = q + kl + k2 = q 

Expression (136) is simplified by the d-operation determined in Section 6.1. 

a) b) c) 
Fig. 5. The primitive Feynman diagrams in nonlocal quark dynamics. 
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Thus, making use of  the definition of  the d-operation for the entire functions 
and taking the trace of ~/-matrices, we get 

l~l~(k) = lim ie2 I { V~m(-q2r~) 1 1 
- m-t~ m-t~, 

• [d~(k)V~m(-q2r2)] 

+ ~ d~(k)d~(-k)V~(-q 2r2)} 

rI~.(k) + = H ~ ( k )  

where q~ = q + k, 

l ' I~(k)  = 4p(1 - ~) dx (1 - x) -~ 

x I d4q ~g-E[2q~q~ + 2k~q~ + g~,(m 2 - q2 _ (kq))l 
. J  

I f l~(k)  = -~  d4q [q~k, - q . ~  + g~,(k 2 + (kq))l 

X (m 2 _ q2 _ ie)r + ~ dx (1 - x ) - ~ - ~  ~- '  

fI~(k) = ~4 (2k~k~ - k2g~) 

X J d4q [(m 2 - -  q 2  _ i e ) ~  _ ( m  E _ q2 _ i~)~] 

Here we have used the representation (134) for the form factor and the notation 

= m 2 _ q2 _ 2x(kq) - k2x 

ie 2 1 -I -a-i~ dl~ v(O r 2~, 0 < ~ < 1 
P - (2~r)  2 2 i  ~ - B + i ~  

Going to the Euclidean metric and integrating over  d4q, we obtain, in the 
limit ~ ~ 0, 

e 2 l f-f~-i~176 v(~) (m2r2)e 

• dx x(1 - x) ' -~ [ '(1 - ~) 

~o = 1 - --~ x(1 -- x) 
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Assuming m2r~ < <  1, we get 

e 2 { ~ / ~ [  4 p '3 ] +v(l)m2r~[ 1 lily(k) = ~ (k~k~ - k2g.~,) --~ ~ + -~ ~/~j 

v ( 1 ) = -  v/~ [ - -~  + 8 P'31 
8 15 

Here we have used the limit 

lim F ( - x )  _ 1 
F(x) 

l k2]} 
12m-~ 

(137) 

and the fact that v(0) = 0. We observe that expression (137) is essentially 
different from the usual vacuum polarization in QED. Terms like ln(m2r~), 
which diverge at r0 ~ 0, are absent. Therefore, the finite-charge renormaliza- 
tion is needed in the quark dynamics. It should be noted that in the limit r0 

0, our theory becomes trivial, i.e., all propagators of the quark and of the 
nonlocal "photon" become zero. 

6.2.2. The Diagram of Self-Energy 

The corresponding term in the S-matrix (Fig. 5b) can be written in 
the form 

- i  :~(x)ER(x - y)O(y): 

~ X )  = (2"rr) -2 ~ d4p eipX~s(p) 
J 

where 

~R(p) = lim -ie2 f VS~ 
8=,o ~ d4k - k  2 - ie "y~ 

m + 1 ~ - f( y~VSm(_(p _ k)2r~) 
•  2 - ( p - k )  2 - i e  

The calculation of this expression is carried out in the same manner as in 
Namsrai (1986). The result reads 

e 2 1 f-[3-ir ,~. V(~) (m2r2) ~ 1 

~ - ~ - ; ~  F ( - ~  - n )  • d'q v('q) (m2r2) n 
j_~+;= sin "trXl F(I = ~-)F-(-I = -q) 
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• ~x ~ - x),x-,, - ~x) (~m - ~x), 

0 < 1 3 < 1 ,  0 < ' V <  1 

Assuming that the value of m2r 2 is small, we obtain 

e2 ~ d6 
~R(P) - 8,/1.2 2i J-~+ioo 

X sin2,rr---- ~ - 

X 2 m - ~  /~+2m~-~ (1 - 6 ) +  

(138) 

2 ]} 1 
~2/~2(2 6)0 6) 

We see again that this expression is finite at the limit r02 =~ 0 and differs 
from the QED value. 

If it is necessary for the choice of the function v(6) in (135), it is simple 
to calculate integrals of the type 

~ - ~ - i ~  v ( 6 l v ( - O  
"n" d6 sin2,rr6 ( " ' )  2i a-~+i~ 

6.2.3. The Vertex Diagram and the Correction to the Anomalous  Magnet ic  
M o m e n t  o f  the Quark  

In the momentum representation, the matrix element corresponding to 
the vertex diagram (Fig. 5c) has the standard form 

f_l~(p, q) = i-~e2(2-tr) -4 I d4k D ~ ( - ( p  - k)2r2)% d~(q)SR([c)% 

where 

d~(q)SR(~)  = ( m  - fc - ~ ) - l % , V m ( - k 2 r 2 ) ( m  - Ic) - I  

+ (m -- /~ - ~)-l{Vm(-(k + q2)r2) - V m ( - k 2 r 2 ) } ~ q  -2 

The symbol $ for the intermediate regularization procedure is omitted here. 
By using the identity 

L f0 a n - I f  = n d x x  ~-l = n(a - b) dx [(a - b)x + b] n-l  
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we can transform the difference of  the form factor values into 

V, . ( - (k  + q2)r2) - Vm(-k2r 2) 

1 f -~-i~176 V(~) 
= _[q2 + 2(kq)] ~ J-13+i= d~ ~ ~ro 2~ 

f0 X dx[m 2 - k z - 2x(kq) - q2xl~-I 

which is useful for concrete calculations. 
The useful form for the matrix element  o f  the vertex functions between 

two "free" single-quark states is 

{ , } O~(p, q) = "~(p') y ~ f  ~(q z) + ~ ~q~F2(q  2) u(p) (139) 

where 

Here 

1 
p '  = q + p, (r~,, = ~ (',/.~/~ - ~/~/.) 

Fl(q 2) = fl(q 2) + f2(q2), F2(q 2) = gl(q 2) + g2(q 2) 

f~(q2) = N(~, x l ) { [ - 2  + 8 1 3 - 2 1 3 2 -  2 q 2 ( 1  - m 2  

X ~ i  -t+~+r - 2 F ( - x  I - ~ )~+~}  

g~(q2) = 4N(~, "q)13(1 - 13)F(1 - -q - ~)~i -~+'a+~ 

~ ) ( l  - a ) ] F ( 1  - ~ - ~)  

L { [ q  2 , ] ~(q2) = N(~, "0)'q dt 2 ~-~ - 2 m2-- (or + ~ )  (1 - 13 - 2et  - 2 ~ )  

X F(1 - "q - ~)~i -~+~+r - 2F(-~q - ~ ) , ~ + ~ }  

g2(q 2) = 4N(~, "q)'q dr (1 - 13 - 2cx - 2ry)F(l  - -q - ~)~2 t+~+~ 

de ~ ~ Lo+,~o d-q " (m2ro2) n N(~, ~ )  - (2,tt.)4 2i j_s+i= sm ~r'q 
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1 f f~ fde td13d~113_%_n~( l_e t_ f$_~l)  
x F(1 - OF(1 - "n) 

~ l ( q  2 )  = (1 - 13)2 _ (q2/m2)ctT 

~2(q 2) = ~l(q 2) - (q2/m2)tT( 1 - ~) + 2(q21m2)tCt~l + (q2/m2)~[3 

Ultraviolet and infrared divergent terms in the first expression of (t 39) in the 
limit qZ ~ 0 are absent, and therefore the corresponding charge renormalization of 
the quarks is finite. The second term (139) at q2 = 0 contributes to the anomalous 
magnetic moment of the quarks by 

f -f~-i~ ~-v-i~ v(6)v(~l ) (m2r2) ~+~ 
4 a d6 dlq sin "tr 6 sin "rr~q aj = F2(0) - (2i) 2 2"tr J-a+/= J-v+/= 

r(1 - -q - O F ( 1  + 26 + "q) 
• (1 - -q)(1 - 6) 

F(3 - -q)F(3 + -q + O 

0 < 13, 3t < 1 (140) 

As usual, assuming m2r 2 < <  1, one gets 

aj = ~~ m2r2 _ 32 ~J1r -~+i= d6 s--~n2 - ( 6(1 - 6) (141) 

We see that the Schwinger term od2xr is absent here. This is natural, 
because our theory does not contain the usual local electrodynamics of the 
quarks in the limit r02 ~ 0. 

Thus the S-matrix (132) is gauge invariant. Indeed, in the quark dynamics 
under consideration the Ward identity 

0 ~R = -O~(p, O) (142) 
Opt. 

is valid, since this identity is a direct consequence of  the identities (127) and 
(125). Since it is not necessary to subtract any infinite counterterms, no 
dangerous terms which can break the Ward identity (142) when formula 
(127) is valid will appear in the perturbation theory. The diagram of  the 
vacuum polarization is gauge invariant due to our choice of the gauge- 
invariant regularization procedure of Kroll (1966). 
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